Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований,


страница1/2
lit.na5bal.ru > Математика > Пояснительная записка
  1   2
c:\users\shushunova\dropbox\мои документы\сайт\ccf27092016_00008.jpg

Пояснительная записка

Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, к результатам освоения основной образовательной программы среднего (полного) общего образования, представленных в Федеральном государственном образовательном стандарте среднего (полного) общего образования. В ней так же учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для среднего (полного) общего образования.

Общая характеристика учебного предмета

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в средней школе направлено на достижение следующих целей:

в направлении личностного развития:

  • формирование представлений о о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Содержание математического образования в средней школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к средней школе. Программа регламентирует объем материала, обязательного для изучения в средней школе, а также дает примерное его распределение между 10-11 классами.

Содержание математического образования в средней школе включает следующие разделы: алгебра, функции, начала математического анализа, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Алгебра» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Завершение числовой линии: систематизация сведений о действительных числах, о комплексных числах, более сложные вопросы арифметики: алгоритм Евклида, основная теорема арифметики. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В средней школе материал группируется вокруг

преобразования иррациональных, показательных, логарифмических и тригонометрических выражений.

Содержание раздела «Функции» продолжает получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

                    1. Раздел «Начала математического анализа» служит базой для представлений об основных понятиях, идеях и методах математического анализа;

                    2. Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей; для формирования представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Раздел «Геометрия» — развивается у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Требования к результатам обучения и освоению содержания курса

Изучение математики в средней школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

  • сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  • креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

  • представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий;

в предметном направлении:

базовый курс

сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

                    1. сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;

                    2. владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;

                    3. владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

                    4. сформированность представлений об основных понятиях, идеях и методах математического анализа;

                    5. владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;

                    6. сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;

                    7. владение навыками использования готовых компьютерных программ при решении

задач.

профильный курс

сформированность представлений о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений;

сформированность понятийного аппарата по основным разделам курса математики; знаний основных теорем, формул и умения их применять; умения доказывать теоремы и находить нестандартные способы решения задач;

сформированность умений моделировать реальные ситуации, исследовать построенные модели, интерпретировать полученный результат;

сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;

владение умениями составления вероятностных моделей по условию задачи и вычисления вероятности наступления событий, в том числе с применением формул комбинаторики и основных теорем теории вероятностей; исследования случайных величин по их распределению.

Место учебных предметов математического цикла в Базисном учебном (образовательном) плане

Базисный учебный (образовательный) план на изучение математики в средней школе отводит 4 учебных часов в неделю в течение 10-11 классов, всего 560 уроков. Учебное время может быть увеличено до 6 и более уроков в неделю за счет вариативной части Базисного плана.
Согласно проекту Базисного учебного (образовательного) плана в 10-11 классах параллельно изучаются предметы «Алгебра и начала анализа и «Геометрия».
Предмет «Алгебра и начала анализа» включает некоторые вопросы, развивающие числовую линию, собственно алгебраический материал, элементарные функции, элементы математического анализа, а также элементы вероятностно-статистической линии.
В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
СОДЕРЖАНИЕ ОБУЧЕНИЯ

Действительные числа (7-15 ч.)

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателем.

Степенная, показательная и логарифмическая функции (28-51 ч.)

Свойства и графики показательной, логарифмической и степенной функций. Основные методы решения показательных и логарифмических уравнений и неравенств. Число е. Натуральные логарифмы. Преобразование иррациональных, показательных и логарифмических выражений. Решение иррациональных, показательных и логарифмических уравнения, систем уравнений и неравенств. Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными (простейшие типы). Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение метода интервалов для решения иррациональных, показательных и логарифмических неравенств. Использование функционально-графических представлений для решения и исследования иррациональных уравнений, неравенств, систем уравнений и неравенств.

Тригонометрия (30-59 ч.)

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств.

Область определения и множество значений

тригонометрических функций. Чётность, нечётность, периодичность

тригонометрических функций. Функции их свойства и графики.

Начала математического анализа (35-58 ч.)

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций. Производные сложной и обратной функций. Вторая производная и ее физический смысл. Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений. Производная показательной, степенной и логарифмической функций.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком.

Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Площадь криволинейной трапеции. Понятие об определенном интеграле. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

Элементы комбинаторики, статистики и теории вероятностей (17 -27 ч.)

Табличное и графическое представление данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. События. Комбинаторика событий. Противоположное событие. Вероятность события. Сложение вероятностей. Независимые события. Умножение вероятностей. Статическая вероятность. Случайные величины.

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве (39 ч.)

Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии.

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Ортогональное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур. Центральное проектирование.

Многогранники (10 ч.)

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Понятие о симметрии в пространстве (центральная, осевая, зеркальная).

Сечения многогранников. Построение сечений.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

 Понятие о преобразовании в пространстве. Движения пространства и их свойства. Параллельный перенос, центральная симметрия. Поворот вокруг оси. Зеркальная симметрия. Осевая симметрия в пространстве.

Координаты и векторы (22 ч.)

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

Тела вращения и площади их поверхностей (14 ч.)

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию. Шар и сфера, их сечения. Эллипс, гипербола, парабола как сечения конуса. Касательная плоскость к сфере. Сфера, вписанная в многогранник, сфера, описанная около многогранника. Цилиндрические и конические поверхности. Формулы площади поверхностей цилиндра и конуса. Формула площади сферы.

Объемы тел (22 ч.)

Понятие об объеме тела. Отношение объемов подобных тел. Формулы объема куба, параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формула объема шара.

*Количество часов на изучение каждой темы указано примерно, возможны изменения по решению предметного методического объединения образовательного учреждения

Логика и множества1

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпримеры.

Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Математика в историческом развитии1

История формирования понятия действительного числа. Зарождение современной алгебры. Истоки интегрального исчисления. Мир кривых линий. Геометрия Лобачевского. Зарождение теории вероятностей.
1 Содержание раздела вводится по мере изучения других вопросов.

Тематическое планирование по геометрии

по государственной базовой программе

(по учебнику Л.С. Атанасян, В. Ф. Бутузов и др. Москва «Просвещение» от 2009 г.

-2 часа в неделю всего 68 часов)

11 класс



урока

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)


Кол-во часов

Дата

1-2

Повторение





2







Метод координат в пространстве




14




3

Прямоугольная система координат в пространстве

Объяснять и иллюстрировать понятие пространственной декартовой системы координат. Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками пространства., уравнение прямой в пространстве. Вычислять длину, координаты вектора, скалярное произведение векторов. Находить угол между векторами.. Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства.

Объяснять и формулировать понятия симметричных фигур в пространстве. Строить симметричные фигуры. Выполнять параллельный перенос фигур. Использовать готовые компьютерные программы для поиска пути решения и иллюстрации решения задач.

1




4

Координаты вектора.

1




5

Связь между координатами векторов и координатами точек.

1




6-7

Простейшие задачи в координатах.

2




8

Угол между векторами. Скалярное произведение векторов.

1




9-11

Вычисление углов между прямыми и плоскостями.

3




12-13

Решение задач по теме метод координат

2




14-15

Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос

2




16

Контрольная работа №1

1







Цилиндр. Конус. Шар.




14




17-19

Понятие цилиндра. Площадь поверхности цилиндра.

Формулировать определение и изображать цилиндр. Формулировать определение и изображать конус, усеченный конус. Формулировать определения и изображать сферу и шар. Формулировать определение плоскости касательной к сфере. Формулировать и доказывать теоремы, выражающие признаки и свойства плоскости касательной к сфере. Решать задачи на вычисление площади поверхности цилиндра, конуса, усеченного конуса. Распознавать тела вращения, на чертежах, моделях и в реальном мире. Моделировать условие задачи и помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Применять изученные свойства геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием. Интерпретировать полученный результат и сопоставлять его с условием задачи. Использовать готовые компьютерные программы для поиска пути решения и иллюстрации решения геометрических задач.

3




20-22

Понятие конуса. Площадь поверхности конуса. Усеченный конус.

3




23-26

Сфера и шар. Уравнение сферы. Взаимное положение сферы и плоскости. Касательная плоскость к сфере.

4




27-29

Решение задач на тела вращения

3




30

Контрольная работа № 2

1







Объемы тел




20




31-33

Понятие объема. Объем параллелепипеда

Формулировать понятие объема фигуры. Формулировать и объяснять свойства объема. Выводить формулы объемов призмы, пирамиды, усеченной пирамиды, цилиндра, конуса, усеченного конуса, шара., шарового сегмента, шарового пояса. Решать задачи на вычисление объемов различных фигур с помощью определенного интеграла. Опираясь на данные условия задачи, находить возможности применения необходимых формул. Решать задачи на вычисление площади поверхности сферы. Использовать формулы для обоснования доказательств рассуждений в ходе решения. Применять изученные свойства геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием. Интерпретировать полученный результат и сопоставлять его с условием задачи. Использовать готовые компьютерные программы для поиска пути решения и иллюстрации решения геометрических задач.

3




34-36

Объем прямой призмы. Объем цилиндра.

3




37-38

Вычисление объемов тел с помощью определенного интеграла.

2




39-41

Объем призмы

3




42-45

Объем пирамиды, конуса.

4




46-49

Объем шара. Объем шарового сегмента, шарового слоя, шарового сектора. Площадь сферы.

4




50

Контрольная работа № 3

1







Повторение




17




51-52

Аксиомы стереометрии и их следствия. Параллельность в пространстве.




2




53-54

Перпендикулярность в пространстве. Угол между прямой и плоскости.




2




55-56

Двугранный угол. Перпендикулярность плоскостей.




2




57-58

Векторы в пространстве.




2




59-60

Метод координат.




2




61-65

Тела вращения. Объемы тел.




5




66

Контрольная работа № 4




1




67-68

Решение задач по всему курсу.




3







Итого

68



  1   2

Поделиться в соцсетях



Похожие:

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПояснительная записка Рабочие программы среднего (полного) общего...
Федеральном государственном образовательном стандарте среднего (полного) общего образования. В ней так же учитываются основные идеи...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПрограмма по учебному предмету «Основы безопасности жизнедеятельности»...
Фундаментального ядра содержания общего образования и требований к результатам освоения основной образовательной программы основного...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПояснительная записка рабочая программа по литературе для 5 класса составлена на основе
Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в Федеральном...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconРабочая программа по литературе для 5-9 классов составлена на основе...
Литература. 5-9 классы. – М.: Просвещение, 2011 г.) и авторской рабочей программы (Литература. Рабочие программы. Предметная линия...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПояснительная записка к рабочей программе по обществознанию для 5...
Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПояснительная записка к рабочей программе по истории для 5 класса...
Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconПояснительная записка к рабочей программе по истории (Всеобщая история)...
Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconРабочая программа по алгебре и началам анализа для 10 а класса на 2013 2014 учебный год
Построенная на основе стандарта основного общего образования по математике, авторской программы по Ю. М. Колягина и Обязательного...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconРабочая программа по геометрии. 7 класс. К умк л. С. Атанасяна и...
Настоящая рабочая программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения...

Пояснительная записка Рабочие программы среднего (полного) общего образования по алгебре и началам анализа и геометрии составлены на основе Фундаментального ядра содержания образования и Требований, iconРабочая программа по литературе для основной общеобразовательной...
В ней также учитываются основные идеи и положения программы развития и формирования универсальных учебных действий для общего образования,...


Литература




При копировании материала укажите ссылку © 2000-2017
контакты
lit.na5bal.ru
..На главную